QorIQ processor integrates four technologies needed for Industry 4.0

NXP’s new QorIQ Layerscape LS1028A processor integrates on a single chip the 4 technologies needed in next-generation industrial systems: time-sensitive networking, high-performance processing, hardware-accelerated user interfaces, and high security.


By Joseph Byrne and Jeff Steinheider, NXP                          Download PDF version of this article


Under a transformation known as Industry 4.0, leading manufacturers are busy conceiving and creating the intelligent industrial enterprise of the future. By merging their information technology (IT) and operational technology (OT) domains, they’re building next-generation smart systems to optimize manufacturability, improve operations, enhance customer support, and analyze real-time data provided by the Industrial Internet of Things (IoT). The IoT concept, in its most reduced form, is about connecting embedded systems to the broader world. More broadly, it encompasses data analysis (often in the cloud), human interaction, and security. The challenge is to assemble in one place four requisite industrial IoT technologies: networking, processing, user interface, and security. The new NXP QorIQ Layerscape LS1028A processor meets this challenge.

The merger of IT and OT is only possible by adapting the networks that bind each domain. Because the domains differ so greatly in function, their networks fundamentally differ. The IT domain encompasses systems that transform data into useful information. For a manufacturer, it includes common systems like accounting, email, and customer-relationship management, and it also includes manufacturing-specific systems for planning and logistics. These are computer-based systems without hard real-time constraints and can use the best-effort approach of regular Ethernet.

The OT domain includes the systems used to make materials into products, real-time embedded systems for process control, workflow management, and process monitoring. A factory may use an Industrial Ethernet technology that adapts standard Ethernet to deliver real-time response and work with legacy industrial communication protocols. Unfortunately, the many Industrial Ethernet protocols neither interoperate with each other nor with standard Ethernet, limiting the economies of scale for technology suppliers and thus slowing innovation. A single machine in a factory may connect to different Industrial Ethernet networks, each running its specific protocol, for different control functions, as figure 1 shows. The manufacturer must deploy gateways to pass data among the different networks or to IT systems.

Because of their limited interoperability, Industrial Ethernet protocols are not well suited to Industry 4.0. At the same time, standard IT-oriented Ethernet does not deliver the real-time performance that control systems demand. The IEEE, however, in 2004 had formed a group for audio/video streaming for consumer applications, later extending its efforts to meet professional standards. This group developed a family of audio/video bridging (AVB) standards for synchronizing devices on a network to the same timebase (borrowing from IEEE 1588), traffic shaping, and admission controls. Although not perfectly suited to industrial applications, these standards provided a framework for managing Ethernet traffic.

Recognizing the potential to adapt AVB for industrial use, the IEEE group changed its name to Time-Sensitive Networking (TSN) and began revising the 802 standards family to address the needs of industrial and automotive applications, as well as improving features for professional audio-video use. New standards define time-aware traffic shaping and policing to enable scheduling critical traffic. To facilitate scheduling, new standards enabled the preemption of non-critical frames. A new standard for redundant network paths improves network reliability. Industrial companies can now deploy a single IEEE-standard Ethernet network that carries both the time-critical control traffic of OT systems and the regular best-effort traffic of IT systems. Now that pivotal networking technologies for the industrial IoT are defined, these companies can focus on the strategic benefits of OT-IT convergence and Industry 4.0.

Just as networks must support time-critical functions, so must processing. A real-time operating system (RTOS) helps ensure that a CPU is available to receive and process control packets when they arrive on a TSN-enabled port. The ability to respond to control packets also helps the CPU to address events coming to the processor from other inputs and to execute loops controlling the system the processor is part of. These loops may need to run up to every 30 microseconds or faster - a degree of precision that a conventional IT-derived operating system cannot meet. The need for more automation requires increased processing capabilities in embedded controllers. Higher performance processing can be used to reduce control loop timing, moving robotic arms and assembly lines faster and increasing factory output. It can also increase the number of axes managed by a single motion controller, leading to robots with more articulated joints, which can operate in tighter spaces or perform tasks that the previous generation of factory robots could not address. Robots that can learn tasks from a human operator will require image processing, along with new machine learning algorithms.

Commercial RTOSs include VxWorks from Wind River and Nucleus from Mentor Graphics. These vendors have a long history of supporting the NXP QorIQ family and its predecessors. With the emergence of industrial-grade Linux, open-source alternatives are another option. These provide industrial enterprises and OEMs the agility to add new capabilities to their systems. Unlike IT-focused and non-real-time embedded Linux distributions, industrial-grade ones provide the determinism, manageability, industrial networking, and security required of OT. One approach to adding real-time capability to Linux is to apply the PREEMPT_RT patch to the kernel to eliminate situations where a software process is blocked indefinitely by another process. In this scheme, applications are coded to the usual Linux API. Another approach taken by Xenomai is to add classic RTOS APIs to a Linux system, facilitating porting traditional RTOS applications to Linux. This supplier also provides mechanisms for device drivers to respond to peripherals in real time, firming up the real-time guarantees Linux can offer. To ease the transition to Linux from a classic RTOS, NXP is working with the industrial Linux community on a distribution integrating the various real-time enhancements and TSN stacks while maintaining standard Linux capabilities.

Figure 1. Modern machines which can be linked to the Industrial Internet of Things via different protocols.

Processing capacity must also be available for analytics. The IoT is not only about networking embedded systems but about capturing data from sensors, analyzing the data, and directing the system responses. A common notion is that distant servers in the cloud perform the analysis. However, the amount of data to be transported and analyzed, the time-criticality of the decisions to be made, and the proprietary nature of the data will lead manufacturers to process manufacturing data locally. Analysis could be done not only on a computer at a factory site but even within production machinery, given sufficiently powerful processors. Beyond analysis, processing capacity in an Industry 4.0 regime will be used to manage operations remotely, to enable machines to coordinate among themselves autonomously, and to gain efficiencies from linking production data and IT systems such as those for enterprise resource planning.

Another function demanding processing power is the human-machine interface (HMI). Smartphone-inspired interfaces will increasingly permeate the staid world of industrial equipment. Easy-to-use, visual interfaces simplify operator control of machines. High-resolution screens enable viewing the output of high-definition (or better) cameras inspecting goods as they are manufactured. Driving these screens will be the same type of graphics processing units (GPUs) found in smartphones. Although this 3D performance of GPUs will be scaled down from what is in a smartphone to reduce cost and power, they will support large, high-resolution screens; overlays of graphics, video and text; and slick user interfaces.

Convergence of OT and IT increases the risk of security threats. In the past, operations were isolated - almost impenetrable from the outside world. A hacker would need a physical link to attack a machine. A converged industrial setting erodes barriers isolating operations so that information can be shared among systems to improve efficiency. New barriers must be erected to ensure the integrity of systems while maintaining permeability to data flow. The first step for equipment manufacturers is to secure processing platforms in their equipment. They must ensure that their systems execute only approved software and connect securely to other systems. These systems must be securely commissioned and periodically updated and resist tampering of their hardware and software. A recent NXP white paper on IoT security discusses security and trust considerations in more detail. Although the paper context is consumer IoT, the same considerations apply to the Industrial IoT. The financial and safety risk in the industrial context is higher, however, amplifying its need for secure systems.

NXP is proud to enable Industry 4.0 equipment manufacturers to incorporate state-of-the-art networking, processing, HMI, and security in their designs with its new QorIQ Layerscape LS1028A processor. This SoC integrates in one place the technologies needed in next-generation industrial systems: time-sensitive networking, high-performance processing, hardware-accelerated user interfaces, and high security. The LS1028 integrates a four-port Gigabit Ethernet switch and two additional Ethernet ports running at up to 2.5Gbps, all implementing TSN protocols. Two powerful 64-bit ARM CPUs provide the computing performance required for modern industrial applications and support RTOSs such as Linux with preemptive real-time patches, Xenomai Linux, Nucleus from Mentor Graphics, and VxWorks from Wind River. The GPU and LCD interface of the processor allows it to support high resolution displays and touch screen inputs. NXP software includes an open-source industrial Linux SDK with real-time performance and support for TSN standards. Importantly, the processor integrates NXP trust architecture, helping to enable bullet-proof IoT security.


Related


Slimming program for medical operating devices

Operating devices in the medical sector are not only subject to strict controls and requirements. Nowadays design demands are becoming more and more important for developers of medical HMI devices. De...

 

Perfect Motion Control For the Networked World

We live in a physical world where everything is connected. Trinamic transforms digital information into physical motion with accessible, flexible, and easy to use toolkits putting the world’s be...


New High-Performance Serial NAND: A Better High-Density Storage Option for Automotive Display

The automotive requirements: speed, reliability and compatibility. Winbond's high-performance serial NAND Flash technology offers both cost and performance advantages over the SPI NOR Flash typica...


President Tung-Yi talks about Winbond

Winbond is a leading specialty memory solution provider with a wide rage of product portfolio. Owned technology and innovation are our assets for our industry and our customers. Winbond we are high qu...


New Memory and Security Technologies for Designers of IoT Devices

Internet of Things (IoT) edge nodes are battery-powered, often portable, and are connected to an internet gateway or access point wirelessly. This means that the most important constraints on new I...


Winbond TrustMe Secure Flash - A Robust and Certifiable Secure Storage Solution

Winbond has introduced the TrustMe secure flash products to address the challenge of combining security with advanced process nodes and remove the barriers for adding secure non-volatile storage to pr...


Ultra-Low-Power DRAM: A “Green” Memory in IoT Devices

Winbond is offering a new way to extend the power savings available from Partial Array Self-Refresh (PASR), which was already specified in the JEDEC standard by implementing a new Deep Self-Refresh (D...


Polytronics Thermal Conductive Board (TCB) at Electronica 2018

This video introduce the basic product structure, advantage, and application of Polytronics thermal conductive board (TCB). Polytronics exhibit wide range of circuit protection products and thermal ma...


Arrow and Analog Devices strategic partnership and collaborative approach to provide solutions for our customers.

Mike Britchfield (VP for EMEA Sales) talks about why Analog Devices have a collaborative approach with Arrow Arrow’s design resources are key, from regional FAEs in the field to online des...


WE MAKE IT YOURS! Garz & Fricke to present the latest HMIs and SBCs at Electronica 2018

Sascha Ulrich, Head of Sales at Garz & Fricke, gives you a quick overview about the latest SBC, HMI and Panel-PC Highlights at electronica 2018. Learn more about the SANTOKA 15.6 Outdoor HMI, the ...


Macronix Innovations at electronica 2018

Macronix exhibited at electronica 2018 to showcase its latest innovations: 3D NAND, ArmorFlash secure memory, Ultra Low Vcc memory, and the NVM solutions with supreme quality mainly focusing on Automo...


ams CEO talks about their sensor solutions that define the mega trends of the future

In this video Alexander Everke, ams’ CEO, talks to Alix Paultre of EETimes about their optical, imaging and audio sensor solutions in fast-growing markets – from smartphones, mobile device...


Intel accelerated IoT Solutions by Arrow

Arrow is showing Intel’s Market Ready Solutions in a Retailer shop with complete eco environment. From sensors via gateways into the cloud, combined with data analytics, the full range of Intel ...


CSTAR - Manufacturers of cable assembly from Taiwan

CSTAR was founded in 2010 in Taipei, Taiwan. Through years of experience, we are experts in automotive products, LCD displays, LCD TVs, POS, computers, projectors, laptops, digital cameras, medical ca...


NXP Announces LPC5500 MCU Series

Check this video to discover the new NXP microcontroller LPC5500, the target application and focus area. Links to more information: LPC5500 Series: World’s First Arm® Cortex® -M...


Molex Meets Solutions at Electronica

These are exciting times in the electronics world as Molex migrates from a pure connectors company to an innovate solutions provider. Solutions often start at the component level, such as the connecto...


Alix Paultre investigates Bulgin's new optical fiber rugged connector range at Electronica 2018

Alix Paultre interviews Bulgin's Engineering Team Leader Christian Taylor to find out more about the company's new range of optical fiber connectors for harsh environments. As the smallest rug...


Cypress MCU and Connectivity are the best choice for real-world IoT solutions.

Cypress’ VP of Applications, Alan Hawse, explains why people should use Cypress for their IoT connectivity and MCU needs. Cypress wireless connectivity and MCU solutions work robustly and sea...


Chant Sincere unveils their latest High Speed/High Frequency connection solutions at Electronica 2018

Chant Sincere has been creating various of product families to provide comprehensive connection solutions to customers. USB Series Fakra Series QSFP Series Metric Connector Series Fibro ...


Addressing the energy challenge of IoT to unleash billions of devices

ON Semiconductor introduces various IoT use cases targeted towards smart homes/buildings, smart cities, industrial automation and medical applications on node-to-cloud platforms featuring ultra-low po...


ITECH, world leading manufacturer of power test instruments, shinned on electronica 2018

ITECH, as the leading power electronic instruments manufacturer, attended this show and brought abundant test solutions, such as automotive electronics, battery test, solar array simulator, and electr...


ITECH new series give users a fantastic user experience

ITECH latest series products have a first look at the electronics 2018, such as IT6000B regenerative power system, IT6000C bi-directional programmable DC power supply, IT6000D high power programmable ...


SOTB™ Process Technology - Energy Harvesting in Embedded Systems is Now a Reality

Exclusive SOTB technology from Renesas breaks the previous trade-off between achieving either low active current or low standby current consumption – previously you could only choose one. With S...


Power Integrations unveils their new motor control solution

In this video friend of the show Andy Smith of Power Integrations talks to Alix Paultre from Aspencore Media about their new BridgeSwitch ICs, which feature high- and low-side advanced FREDFETs (Fast ...


Panasonic talks about their automotive technology demonstrator

In this video Marco from Panasonic walks Alix Paultre of Aspencore Media through their automotive technology demonstrator at electronica 2018. The demonstrator highlights various vehicle subsystems an...